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Abstract

A novel method for the approximation of complex functions even in the case of relative-

ly poor starting values of the approximation-parameters for using least mean-square methods

is described. The method relies largely on the introduction of an appropriate approach by

vector projection for reducing complex variables to real variables.

Introduction

In computer-aided circuit design in ge-

neral and in designing microwave filters in
particular the approximation of given curves
by functions with suitably determinable pa-
rameters is assuming steadily increasing im-
portance. For adapting real functions to se-

ries of scalar variables there are numerous
well-tried methods’-s for minimizing the sum

of the squares of the deviations between the
ideal values and the values assigned to the

approximating function.
It is also becoming increasingly neces-

sary to use complex functions for approxi-
mating series of complex values of for in-

stance the reflection coefficient or trans-
mission coefficient of a filter. If good star-
ting values of the function parameters to be

determined are already available, this prob-
lem can, owing to the quasi linear response
of the complex network functions to small

changes in the parameters, be solved by mi-

nimizing the eum of the magnitudes of the
differences between the given and the appro-

ximating complex values. Thereby the well-
tried least mean-equare methods can also be

used for approximating complex functione. If
however only relatively poor parameter star-
ting values are available for the approxima-
tion, these methods will often fail in the

sense of yielding a secondary minimum of the

objective function. Such failure is clearly
due to the choice of the magnitude of the
difference between complex values as the va-
riable to be minimized if the complex appro-

ximating function has no longer a q-uasi lin-

ear response.

I.Approximation Of Complex Functions By

Minimizing The Mean Square Amplitude Error

For approximating a given series of com-

plex values
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of a complex function ~a(pi ), dependent on
the parameters pi, those parameters pix are to

be determined, which satisfy the two require-

ments

a 9
r -r ~ O and r“ - rg Lo

RI RI II [(

or 1=1,2, ..,m (1)

a ~:Lo.
‘1

We see, that in consequence c]f the rela-

the two requirements (1) can be substituted
by the equivalent requirement

(2)

Thereby the problem of approximating a series

of complex values can be reduced to the ap-

proximation of a series of real values, and

it can be manipulated by using some of the
well-known methods for minimizing the mean-

square error, whereby the minimization prob-

lem

(3)

hae to be solved.
Since complex network functions show an

quasi line~r response to minor variations in
parameters , the variation of the parameter

p{ by Api << pi will result in the terminal

Fig. 1:
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Quasi linear response of the reflec-
tion coefficient to minor variations
bpi < pi .
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points of the vectors wandering along the ge-
ometric locus approximately represented by

strai~ht lines (Fig. 1), and by appropriately
varying the parameters it is possible to
bring the vectors ~~ and X; into congruence
by decremental reduction of the intervall,s

Ig; - ~:1. For larger values of Api this pro-
cedure is not longer possible on account of
the increasingly nonlinear response.

2.Definition Of A Real App roximation For The..——. ——.—

=e–x~r~ation Error BY V~P~
~ection———

If the eeries of complex values are re-

presented as series of vectors in the complex
plane, the problem of approximation will con-
sist in bringing the respective vectors of
the approximation function ~a(pi ) into con-

gruence with the given series g by varying

the parameters p; (!li~. 2). EL
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Fig. 2: Vectorial representation of a given
series of complex values X; and their

approximation by ra .
—t

For congruence the two requirements

A&,=&ra - &r
9~o

—1 —1 1=1,2, ..,m (4)

larlL= 1~~1 - ls~l~ o

:nust be satisfied. Fig. “2 shows the equiva-

lence of the requirements (4) and (2).

Varying the parameters by Ap~ usually
causes the rotation of each vector ra byA2@a

accompanied by a variation in magni~~de of
—1

Al~f\ . For an approximation the parameters
have to be varied such, that the vectors can
be rotated to the desired value 2$.K~ and the
magnitude can be approximated to 1~~1.

As an appropriate combination of the two
requirements (4) into a single requirement
relating to one objective variable, the fol-
lowing approximation is introduced

This approximation can be interpreted as

follows: Project the approximating vector r“

by the regulation lr~[. lcosa&Llk.sign(cosA~l~L
in a directional li~e segment SL to the

straight li~e g passing through rg . For a ro-
tation of ~[ the line segment SL

–An the

straight 13.ne g assumes positive and negative
values of a magnitude which depends on both

Fi.g. 3: Projection si with various selected
values of k.

Fig. 3 gives the resulting values of SL
for various chosen values of k and especially
for k=O. In this case the requirement

(5) leads to the expression

1); Lo

which essentially contains the requirement
for the congruence between the magnitudes of
the vectors, additionally however includes

the condition -xIL< A+L 4 7/2 by taking into

consideration the angle between the vectors
a and X; .

XL For all k>O values the variable SL pas-

ses through a value range of an upper bound

%.x’oa to a lower bound s~aX>O whereby for
all I-t with 2$~~.E/2,sx/z. independent of l~~j the
zero is passed through and the values -~max
and s~aX are yielded by the resulting l~[l. For

all values of k<O the variable SL passes

through a value range of s~in>O to +- and

-Wto S;in<o whereby for 2$~~.iTll,3i’i12 indepen-

dent of [~~1>11’ the value of +- changes to-co
or vice versa and the values s~in and s~in are

likewise yielded by the resulting 1~~1 .
It is obvious that the requirement (5)

does not automatica~ly y:eld lAZ~I=CI arLd A4L=o,
and consequently

:L ‘xl.”
Fig. 4 shows some

geometric loci of permissible “optimum vec-
tors’! g~OPt for various values of k. The ap-

pearance of such geometric loci of permissi-
ble vectors is a general result of the com-
bination of the two requirements (4) into one

approximation requirement (5).

/’/\’
/

Fig. 4: Geometric loci of permissible “opti-

mum vectors!! ra as a function of k.
-Lopt

3.Approximation Of Complex Functions By
Minimizing The Sum Of The Squares Of D;

Using the newly introduced approximation
D~~O istead of the two requirements 1~~1 +0

and Ai$L=O, the problem of the approximation

of a series of vectors ~~ by the complex

function ~“(p; ) is reduced to the minimiza-
tion problem
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x( s, - Igl )2 ~ MIN

and conseq~elntly to the approximation of real
values.

The approximation process can graphical-

ly be interpreted as follows: Using the pro-

jection s( , which depends on both amplitude

and angle of the vector:, a rotation of the

approximating vectors Xt into the required
vectors ~~ is efTected.

Fig. 3 shows, that all values of k<O are

only efficient, if the conditionln411(~/2holds
for all ~~. For all ~~ withlA~tl>WL the re-

duction of the angle AA1 between Z; and ~~ *
that meane a correction of the approximation,

namely leads to an increasing value of SL and

would announce the change for the worse in
the approximation process. The required as-

sumption IA4LI< T/2 ,1=192$ ..$m however cannot

be taken generally. Moreover the values k<O
are unsuitable on account of the discontinu-
ities of s~ at zlk and Ni/2 .

The influence of either the magnitude or

the angle of the vectors on the approximation
process can be increased with the aid of k.
In particular it is possible to define an ex-
ponent k*= k(Aa) dependent on A+ which re-

sults in the angle becoming more pronounced
for large deviations A2$ and the magnitude be-

coming more pronounced for small A2$ . The ex-
pression

k*= (2 - cosA@-ko

has here proved very effective.

Owing to the permissible geometric loci
of optimum vectors it is also essentially

possibl; to find a minimum MIN=O. for the case

~; *Z,. This solution is however known from

experience to come so cloee to the solution

=:
= ~~, that the response of ~“(pi) ie al-

ready lxnear, whence the minimization of the
mean square error of the amplitudes of the
vector differences (3) is achieved in only a
few steps.

The proposed method has been successful-

ly used in conjunction with a least mean-

square method described by D.W.Marquard5 for
the approximation of reflection coefficients

and transmission coefficients, especially in
cases where the minimization of the ampli-
tudes of the differences between the vectors

and ~~ led to remote secondary minima.xi
The number of optimizing steps was in all

cases significantly reduced, whereby k=l was

generally used.
Fig. 5 shows with reference to an exam-

ple successive approximation by minimizing

the mean square error of the amplitudes of
the vector differences (3). The best appro-

ximation obtained as the final result of four
optimizing steps is still far remote from the
desired optimum and obviously represents a
local minimum.

For the same example Fig. 6 shows the
improvements achieved in six successive opti-
mizing steps through the use of the new
method. The result of the last etep corre-
sponds with the ideal curve.

Conclusion

By the introduction of the proposed ap-
proximation for the complex approximation er-

ror it is now possible to solve the problem

of approximation of complex functions using
the well-tried least mean-square methods even

in the case of relatively poor starting values
of the approximation parameters. The advances
as to the state-of-art are an increased re-

gion of solvability and a substantial reduc-
tion of the numerical effort.

Fig. 5: Approximation of ~~using~lrq-rg124MlN

Starting values ~ and
,=1 1 1

four optimizing steps ~-~ . Curve ~ , the
final result of the optimizing process, is

still far remote from the ideal curve. (se-
condary minimum! )

Fig. 6: Approximation of r; using ~(sl-lr~j]zjmm

Starting values ~and sixt”l

optimizing steps ~-~ . Curve@ ,, the re-
sult of the last optimizing step, corresponds
with the ideal curve rg .
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