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Abstract

A novel method for the approximation of complex fuunctions even in the case of relative-
ly poor starting values of the approximation-parameters for using least mean-square methods
is described., The method relies largely on the introduction of an appropriate approach by
vector projection for reducing complex variables to real variables.

Introduction

In computer-aided circuit design in ge-
neral and in designing microwave filters in
particular the approximation of given curves
by functions with suitably determinable pa-
rameters is assuming steadily increasing im-
portance. For adapting real functions to se-
ries of scalar variables there are numerous
well-tried methods!-® for minimizing the sum
of the squares of the deviations between the
ideal values and the values assigned to the
approximating function.

Tt is also becoming increasingly neces-
sary to use complex functions for approxi-
mating series of complex values of for in-
stance the vreflection coefficient or trans-
mission coefficient of a filter. If good star-
ting values of the function parameters to be
determined are already available, this prob-
lem can, owing to the quasi linear response
of the complex network functions to small
changes in the parameters, be solved by mi-
nimizing the sum of the magnitudes of the
differences between the given and the appro-
ximating complex values. Thereby the well-
tried least mean-square methods can also be
used for approximating complex functions. If
however only relatively poor parameter star-
ting values are available for the approxima-
tion, these methods will often fail in the
sense of yielding a secondary minimum of the
objective function. Such failure is clearly
due to the choice of the magnitude of the
difference between complex values as the va-
riable to be minimized if the complex appro-~
ximating function has no longer a quasi lin-
ear response.

1.Approximation Of Complex Functions By
Minimizing The Mean Square Amplitude Error

For approximating a given series of com-~
plex values

g _ . 9 -
r, = rRl + J rll , L =1,2,000,m
by the values
a a . a . o_.a
r - I’_l(Pi) - rR[ + 3 rll )
1 = 1,2,00.,m3 1 = 1,2,,,.,0

of a complex function r°(p,), dependent on
the parameters p;, those parameters pﬁ are to
be determined, which satisfy the two require-
ments
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the two requirements (1) can be substituted
by the equivalent requirement
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Thereby the problem of approximating a series
of complex values can be reduced to the ap-
proximation of a series of real values, and
it can be manipulated by using some of the
well-known methods for minimizing the mean-
square error, whereby the minimization prob-
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has to be solved.

Since complex network functions show an
quasi linear response to minor wvariations in
parameters6 the variation of the parameters
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Fig. 1: Quasi linear response of the reflec~

tion coefficient to minor variations
APi €« Pj .



points of the vectors wandering along the ge-
ometric locus approximately represented by
straight lines (Fig. 1), and by appropriately
varying the parameters it is possible to
bring the vectors r and r? into congruence
by decremental reduction of the intervalls
'E - gfl. For larger values of ap; this pro-

cedure is not longer possible on account of
the increasingly nonlinear response.

2.Definition Of A Real Approximation For The

Complex Approximation Error By Vector Pro-
Jection

If the series of complex values are re-
presented as series of vectors in the complex
plane, the problem of approximation will con-
sist in bringing the respective vectors of
the approximation function r®{p;) into con-
gruence with the given series r? by varying

the parameters p; (Fig. 2).
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Fig. 2: Vectorial representation of a given

series of complex values rf and their

approximation by rl .

For congruence the two requirements
'
sx=3r" - az2° = o0
! , 1=1,2,..,m (&)

0

must be satisfied., Fig. 2 shows the equiva-
lence of the requirements (4) and (2).
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Varying the parameters by apj usually
causes the rotation of each vector £ byALr
accompanied by a variation in magunitade of
A1£°|. For an approximation the parameters
have to be varied such, that the vectors can
be rotated to the desired value Arf and the
magnitude can be approximated to Ir%.
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As an appropriate combination of the two
requirements (4) into a single requirement

relating to one objective variable, the fol-
lowing approximation is introduced
T a ko g !
D, = | LlcosA4ﬂ-51gn(cos:543—]r‘l= o (5)
=1 =

This approximation can be interpreted as
follows: Project the approximating vector r’
by the regulation |1:'_| lcos ax |l s1gn(cosA2;7
in a directional line segment s; to the
straight line g passing through r For a ro-
tation of r the line segment s, on the
straight line g assumes positive and negative
values of a magnitude which depends on both

lrfl and zrf .
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Fig. 3: Projection s, with various selected

values of k.

Fig. 3 gives the resulting values of 5,
for various chosen values of k and espe01ally
for k=0. In this case the requirement D —0
(5) leads to the expression

1
izf-sign(cosax) - 1zf| =0,

which essentially contains the requirement
for the congruence between the magnitudes of
the vectors, additionally however includes
the condition -®/2¢aX ¢ T/2 by taking into
consideration the angle between the vectors
£° and E? .

For all k>0 values the variable s, pas-
ses through a value range of an upper bound
sm“<0 to a lower bound s} >0 whereby for
all rl w1th.411=|dzsuﬂ.1ndependent of Iz Y the
zZero 1s passed through and the values s;qx
and Smux are yielded by the resultinglgﬁ. For
all values of k<O the varlable s, passes
through a value range of s 20 to +w and
~% to smn<0 , whereby for 4rlwdzmﬂz indepen-
dent of |r 1>0 the value of +« changes to-—w
or vice versa and the values sg;, and st are
likewise yielded by the resulting lrLl

It is obvious that the requ1rement (5)
does not automatically yield |4x{=0 and ax=0
and consequently 3“ = rg . Fig. 4 shows some
geometric loci of perm1551ble "optimum vec-
tors"‘ra for various values of k. The ap-
pearance of such geometric loci of permissi-
ble vectors is a general result of the com-~
bination of the two requirements (4) into one
approximation requirement {(5).

min

Fig. 4: Geometric loci of permissible "opti-

mum vectors" E&M as a function of k.

3.Approximation Of Complex Functions By
Minimizing The Sum Of The Squares Of D,

1 Using the newly introduced approxl?atlon
Dl—O istead of the two requirements lr |=0
and 5%,=0, the problem of the approx1mat10n
of a series of vectors rg by the complex
function r°(p;) is reduced to the minimiza-
tion problem



m
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and consequently to the approximation of real
values.

The approximation process can graphical-
ly be interpreted as follows: Using the pro-
jection s, , which depends on both amplitude
and angle of the vectors, a rotation of the
approximating vectors r into the required
vectors gg is effected.

Fig. 3 shows, that all values of k<O are
only efficlent if the conditionla 4 l1<%/2holds
for all rj. For all r| withlaglaw/z the re-
duction of the angle a4, between r and r, ,
that means a correction of the approximation,
namely leads to an increasing value of s and
would announce the change for the worse in
the approximation process. The required as-
sumption lag ¢ T/2 ,1=1,2,..,m however cannot
be taken generally. Moreover the values k<O
are unsuitable on account of the discontinu-~
ities of s, at /2 and 37W/2 .

The influence of either the magnitude or
the angle of the vectors on the approximation
process can be increased with the aid of k.
In partlcular it is possible to define an ex-
ponent k*= k(a%) dependent on ax which re-
sults in the angle becoming mere pronounced
for large deviations aX and the magnitude be-
coming more pronounced for small a4 ., The ex~

pression k*= (2 - cosax) k

has here proved very effective.

Owing to the permissible geometric loci
of optimum vectors it is also essentially
possible to find a minimum MIN=Q for the case

rl £ ri. This solution is however known from
,experience to come so close to the solution

r! = r], that the response of r?(p;) is al-
ready llnear, whence the minimization of the
mean square error of the amplitudes of the
vector differences (3) is achieved in only a
few steps.

The proposed method has been successful-
ly used in conjunction with a least mean-
square method described by D.VW. Marquard5 for
the approximation of reflection coefficients
and transmission coefficients, especially in
cases where the minimization of the ampli-
tuges of the differences between the vectors
r, and Eﬂ led to remote secondary minima.
The number of optimizing steps was in all
cases significantly reduced, whereby k=1 was
generally used.

Fig. 5 shows with reference to an exam-
ple successive approximation by minimizing
the mean square error of the amplitudes of
the vector differences (3). The best appro~
ximation obtained as the final result of four
optimizing steps is still far remote from the
desired optimum and obviously represents a
local minimum,

For the same example Fig. 6 shows the
improvements achieved in six successive opti-
mizing steps through the use of the new
method., The result of the last step corre-
sponds with the ideal curve.

Conclusion

By the introduction of the proposed ap-
proximation for the complex approximation er-
ror it is now possible to solve the problem
of approximation of complex functions using
the well~tried least mean-square methods even
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in the case of relatively poor starting values
of the approximation parameters. The advances
as to the state-of-art are an increased re-~
gion of solvability and a substantial reduc-
tion of the numerical effort,

Fig., 5: Approximation of rfu31ng Elq ﬁ rﬂN

Starting values and

four optimizing steps [1-{] . Curve & , the
final result of the optimizing process, is

still far remote from the ideal curve. (se-
condary minimum!)

Renmcizn ==~

Fig. 6: Approximation of r

Starting values and six !*f
optimizing steps [@-[6 . Curve @ ,
sult of the last optimizing step,
with the ideal curve gﬁ .
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